PHOEG Helps Obtaining Extremal Graphs
نویسندگان
چکیده
Extremal Graph Theory aims to determine bounds for graph invariants as well as the graphs attaining those bounds. We are currently developping PHOEG, an ecosystem of tools designed to help researchers in Extremal Graph Theory. It uses a big relational database of undirected graphs and works with the convex hull of the graphs as points in the invariants space in order to exactly obtain the extremal graphs and optimal bounds on the invariants for some fixed parameters. The results obtained on the restricted finite class of graphs can later be used to infer conjectures. This database also allows us to make queries on those graphs. Once the conjecture defined, PHOEG goes one step further by helping in the process of designing a proof guided by successive applications of transformations from any graph to an extremal graph. To this aim, we use a second database based on a graph data model. The paper presents ideas and techniques used in PHOEG to assist the study of Extremal Graph Theory.
منابع مشابه
Eccentric Connectivity Index: Extremal Graphs and Values
Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...
متن کاملThe Signless Laplacian Estrada Index of Unicyclic Graphs
For a simple graph $G$, the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$, where $q^{}_1, q^{}_2, dots, q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$. In this paper, we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...
متن کاملThe Extremal Graphs for (Sum-) Balaban Index of Spiro and Polyphenyl Hexagonal Chains
As highly discriminant distance-based topological indices, the Balaban index and the sum-Balaban index of a graph $G$ are defined as $J(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)D_{G}(v)}}$ and $SJ(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)+D_{G}(v)}}$, respectively, where $D_{G}(u)=sumlimits_{vin V}d(u,v)$ is the distance sum of vertex $u$ in $G$, $m$ is the n...
متن کاملEfficient Removal without Efficient Regularity
Obtaining an efficient bound for the triangle removal lemma is one of the most outstanding open problems of extremal combinatorics. Perhaps the main bottleneck for achieving this goal is that triangle-free graphs can be highly unstructured. For example, triangle-free graphs might have only regular partitions (in the sense of Szemerédi) of tower-type size. And indeed, essentially all the graph p...
متن کاملAnalytic methods for uniform hypergraphs∗†
This paper presents some analytic methods for studying uniform hypergraphs. Its starting point is the spectral theory of 2-graphs, in particular, the largest and the smallest eigenvalues λ and λmin of 2-graphs. First, these two parameters are extended to weighted uniform hypergraphs; second, the eigenvalues-numbers λ and λmin are extended to eigenvalues-functions λ(p) and λ (p) min, which also ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.07861 شماره
صفحات -
تاریخ انتشار 2017